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Abstract— In

imdementation

this letter, an efficient three-dimensional (3-D)

of the ~erfectlv matched layer (PML) t~~e of
ab;orbing medium is presented_. The technique combiries ‘a new
eight-unknown time domain formulation in regions in which

there is only one nonzero conductivity with the original 12-
unknown formulation in the edge and corner regions where
nonzero conductivities overlap. Numerical examples of radiation

and guided wave problems are included to demonstrate that

the modified formulation provides accuracy comparable to the
original split field formulation while substantially reducing the
memory and CPU requirements of the PML regions.

I. INTRODUCTION

B ERENGER [1] recently introduced a novel concept for

designing a “Perfectly Matched Layer” (PML) that pro-

vides reflectionless absorption of electromagnetic waves in-

dependent of frequency or angle of incidence. It has been

demonstrated that PML provides unmatched performance in

the ability to provide reflectionless mesh truncation for three-

dimensional (3-D) finite-difference time-domain simulations

[2], [3]. The ability to absorb outgoing waves is provided by

the additional degrees of freedom introduced by a split field

formulation with anisotropic material properties. However,

this improved performance comes at a price: to effectively

absorb the energy, a PML region of sufficient depth must

be added onto the computational domain. Even though the

PML medium may be placed much closer to the scatterer

than possible with traditional ABC’s, the addition of the PML

regions (which have twice the number of unknowns as the

traditional Yee scheme) may result in increased storage and

CPU requirements. Previously, a modified formulation was

presented that yields Maxwell’s equations with an additional

dependent source term [4], [5]. In this letter, additional details

and numerical verification of the accuracy of the new tech-

nique are presented for the time domain. For wall regions, only
eight unknowns are required. In the much smaller edge and

corner regions, the original 12-equation formulation is used

and an interface condition is applied.

II. PERFECTLY MATCHED LAYER—SPLIT EQUATIONS

The defining property of PML absorber that, in theory,

provides reflectionless absorption independent of frequency or
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Fig. 1. E, at position (12, 12, 12) due to a 1.O-GHZ sinusoidal sonrce at

center of a 20 x 20 x 21 cell PEC cavity filled with PML medium of constant

conductivity; Ax = 15 mm, At = 25 ps.

angle is

c~ *— q-
— i=x, y, z’.

E K’
(1)

The original 3-D extension of Berenger’s PML concept results

in 12 equations in 12 split field unknowns [2] of which two

representative equations are reproduced below

The original PML implementation employed exponential

differencing in time due to the rapid decay of the fields.

However at a given point in space within the PML, the field

behavior is not rapidly decaying in time. The field does decay

rapidly in space; however, exponential spatial diffcrencing

was not used. Use of standard central differencing for a

lossy medium results in equivalent accuracy levels. Since

both methods have the same computational cost, there is no

computational advantage to either method. However, a test

case has been contrived that suggests exponential differencing

to be more limiting in the range of allowed conductivity

values than central differencing. Simulation of a PML-filled

cavity with constant c = 0.012 leads to instability when

exponential differencing is employed; however, instability was

not observed with central differencing as shown in Fig. 1.

Central differencing is used in the technique presented below.
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III. MODIFIED UNSPLIT TIME DOMAIN PML

The unsplit formulation in the frequency domain is used

as a starting pc~int [6]. For attenuation in the z-direction, the

relevant equations for the magnetic field components are

jkz
jwpoHz = jkv Ez – * Ey (3a)

l–j%
W,uo

jkz
jbJ~otiy = E% – jk%Ez (3b)

~.jq
w po

jwpofiz = jkzfiv – jky~z. (3C)

Similar equaticms for the electric field can be obtained by

duality. In the orig~nal 12 split equations, o.Z is associated

with the d/d.z portion of the curl operator. Here OZ can be

associated with a mapping for the z variable into complex

space [7], [8]. Rearrangement of (3a) results in

(jw#o + ~:)fiz = j~,fiz + jk. sEz - jkzE,. (4)
jw#@

Multiplication by jw results in a second-order time derivative

for HZ in the time domain. Implementation of this scheme

results in a less efficient algorithm then the original split-

field PML. An alternate approach is to define an intermediate

variable to abscrb the effect of the extra j w term. Two methods

are presented that have identical storage requirements, but

different CPU requirements per iteration. Transformation of

(4) into the time domain produces a modified Maxwell’s

equation with an additional source term, denoted by F,, that

is dependent upon the integral of the normal component of

the electric field

(“O$+o’)Hz==2
where

This method provides physical insight into

8FZ—
t?y

(5)

(6)

the action of the

PML medium in terms of dependent sources. However, it is

not the most convenient formulation for numerical implemen-

tation. Alternatively, this source Fz can be incorporated with

E, into the variable P=

where P= is given by

5P%=($+3EZ

(7)

(8)

Similar equations can be derived for the other field components
tangential to the direction of propagation, i.e. HY, E., and Ev.

The electric field equations are modified by the dual variables

G= and Q. for Fz and P=, respectively. The equations for the
normal components, Ez and Hz, are unchanged.

The six field equations are discretized using the Yee leapfrog

scheme with central diffa-encing, with the following represen-

tative equation:

~n+1,2 _ 1 – cJ:At/2po
z .

l+ajAm~H:-”2+ l+;~$2.o

“[
~i( . +$’:)

;E; _ ~~ En 1 (9)

where spatial indexes have been removed for notational clarity.

The auxilimy integrals are performed using a running sum

trapezoid rule integration method

The update of F; is performed in two steps to avoid the back-

storing of any variables. The contribution from E;– 1 is added

to F:– 1. Then E; is computed from E:– 1,Hv%-1/2, Hyl/2

n—1/2
and GZ . In the ed~e and corner PML regions the spli~

equations are updated. (In the interfaces, the split tangential

electric field components are combined into total field com-

ponents. Finally, F: is completed by adding the contribution

from E:. A similar two-step process is done for G~+~[2. For

the second method, discretization of (8) yields

“=P’-l+(%%L)E’-l+(%+
(11)

Again a two-step process is used to calculate P: efficiently.

The CPU and memory savings of the modified PML formu-

lation over the split fielcl formulation can be demonstrated by

considering a free space radiation problem within a cubical

domain iV cells on a side surrounded by a PML medium

of D layers. The FDTD implementation of the original PML

equations results in the storage requirements for 12 N x N x D

arrays for the split field components in the six wall regions,

requiring a total of 48 additions and 16 multiplications per

iteration. For the speciid case of a wall PML region with

propagation in the ,z-directicln, Ez and Hz do not need to

be split. This 10-unknown PNIL region requires 40 additions

and 14 multiplications, Both unsplit formulations require only

8 ill x N x D arrays in the six wall regions. Fig. 2 shows

that memory savings of up to 20% can be achieved within the

PML as the ratio of Yce size to PML depth is varied. The

dependent source implementation results in 36 additions and

14 multiplications for cubic cells. For a PML depth to Yee

dimension ratio of 0,1, roughly 7% CPU time savings within

the PML is attained. T!he second implementation eliminates

eight additions per iteration resulting in up to 2270 time

savings within the PML (1490 for general noncubical cells).

As compared to the original 12 unknown formulation, savings

in memory and runtime can be as much as 33 Yo. Both unsplit

formulations provide the same memory benefits; however, the

second implementation not only performs more efficiently but

is also more attractive for pwallel implementation.
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Fig. 2. Percent reduction in memory and rnntime requirements within PML

regions as ratio of number of PML layers to number of cubic Yee cells along
an edge of a cubical volume is varied.
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Fig. 3. Local error observed at E, (a, O, O) at time step 100 for various

PML implementations. Parabolic profile with R = .001%; Ax = 15 mm,
At = 25 tIS.

IV. NUMERICAL EXAMPLES

Several test cases are investigated to ascertain the accuracy

levels that are associated with the unsplit PML formula-

tion. First, a simple point source radiating in free space

is considered. PML is used to truncate the computational

volume of the test region to 50 x 50 x 51 cubical cells. The

local error caused by reflections from the PML is computed

by subtracting the test field from the corresponding space-

time field in a much larger reference domain. E. at the

center of the domain is excited with a smooth compact

pulse [9]. Fig. 3 shows the absolute error at time step 100

along the line (z, O,O) for various PML implementations.

The difference between exponential and central differencing is

seen to be insignificant. The results for the reduced unknown

formulations are indistinguishable from the split formulation

results.

To test the effectiveness of the modified formulation without

the aid of the corner regions, a rectangular X-band waveguide

is studied. A 1O,O-GHZ ramped sinusoidal excitation [10] is

used tlo operate above the 6.557-GHz cutoff frequency of

the dominant TEIO mode. The reflection error due to the

PML termination is calculated at the center of the termination

plane. Reflections of –7 1.3 dB are obtained with the split field

formulation as well as both modified formulations for a 12-

layer PML with fourth-order conductivity profiles. However,

the modified PML is more sensitive to the order of the

conductivity profile than the regular PML suggesting that the

modified formulations are more prone to reflections caused

by the larger discontinuities in c that occur in the first few

layers with low-order profiles. Because higher-order profiles

do not increase the computational demand, the modified PML

efficiently provides accuracy levels comparable to the more

expensive split PML.

V. CONCLUSION

An {efficient reduced field implementation of the Berenger

perfectly matched layer concept has been presented. By com-

bining the unsplit formulation in the wall regions with the split

formulation in the edges and corners, memory and CPU time

requirements may be reduced by up to 33% when compared to

the original 12-unknown formulation or 2070 when compared

to the 10-unknown formulation specialized for wall regions.

The reduced method cannot be applied in the edge and

corner regions because the overlapping conductivities make

the expressions for the tangential components less efficient

than th~esplit formulation. Research is currently underway on

removing this restriction.
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