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An Efficient Implementation of Berenger’s
Perfectly Matched Layer (PML) for
Finite-Difference Time-Domain Mesh Truncation
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Abstract— In this letter, an efficient three-dimensional (3-D)
implementation of the perfectly matched layer (PML) type of
absorbing medium is presented. The technique combines a new
eight-unknown time domain formulation in regions in which
there is only one nonzero conductivity with the original 12-
unknown formulation in the edge and corner regions where
nonzero conductivities overlap. Numerical examples of radiation
and guided wave problems are included to demonstrate that
the modified formulation provides accuracy comparable to the
original split field formulation while substantially reducing the
memory and CPU requirements of the PML regions.

I. INTRODUCTION

ERENGER [1] recently introduced a novel concept for

designing a “Perfectly Matched Layer” (PML) that pro-
vides reflectionless absorption of electromagnetic waves in-
dependent of frequency or angle of incidence. It has been
demonstrated that PML provides unmatched performance in
the ability to provide reflectionless mesh truncation for three-
dimensional (3-D) finite-difference time-domain simulations
[2], [3]. The ability to absorb outgoing waves is provided by
the additional degrees of freedom introduced by a split field
formulation with anisotropic material properties. However,
this improved performance comes at a price: to effectively
absorb the energy, a PML region of sufficient depth must
be added onto the computational domain. Even though the
PML medium may be placed much closer to the scatterer
than possible with traditional ABC’s, the addition of the PML
regions (which have twice the number of unknowns as the
traditional Yee scheme) may result in increased storage and
CPU requirements. Previously, a modified formulation was
presented that yields Maxwell’s equations with an additional
dependent source term [4], [5]. In this letter, additional details
and numerical verification of the accuracy of the new tech-
nique are presented for the time domain. For wall regions, only
eight unknowns are required. In the much smaller edge and
corner regions, the original 12-equation. formulation is used
and an interface condition is applied.

1L PERFECTLY MATCHED LAYER—SPLIT EQUATIONS

The defining property of PML absorber that, in theory,
provides reflectionless absorption independent of frequency or

Manuscript received August 18, 1995.

The authors are with the Electromagnetic Communication Laboratory,
University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.

Publisher Item Identifier S 1051-8207(96)00912-9.

0.002
0.001
€
2z
[ 0
w
+
i
w
ul.l!* -0.001
—>—Central o = .12 S/m
--2--Exponential ¢ = .12 $/m
-0.002 ----o---- Exponential ¢ = .11 S/m
0 20 40 60 80 100
Time Step
Fig. 1. E. at position (12, 12, 12) due to a 1.0-GHz sinusoidal source at

center of a 20 X 20 x 21 cell PEC cavity filled with PML medium of constant
conductivity; Az = 15 mm, At = 25 ps.
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The original 3-D extension of Berenger’s PML concept results
in 12 equations in 12 split field unknowns [2] of which two

representative equations are reproduced below
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The original PML implementation employed exponential
differencing in time due to the rapid decay of the fields.
However at a given point in space within the PML, the field
behavior is not rapidly decaying in time. The field does decay
rapidly in spacec; however, exponential spatial differencing
was not used. Use of standard central differencing for a
lossy medium results in equivalent accuracy levels. Since
both methods have the same computational cost, there is no
computational advantage to either method. However, a test
case has been contrived that suggests exponential differencing
to be more limiting in the range of allowed conductivity
values than central differencing. Simulation of a PML-filled
cavity with constant 0 = 0.012 leads to instability when
exponential differencing is employed; however, instability was
not observed with central differencing as shown in Fig. 1.
Central differencing is used in the technique presented below.
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III. MobIFIED UNSPLIT TIME DOMAIN PML

The unsplit formulation in the frequency domain is used
as a starting point [6]. For attenuation in the z-direction, the
relevant equations for the magnetic field components are
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Similar equations for the electric field can be obtained by
duality. In the original 12 split equations, o, is associated
with the d/dz portion of the curl operator. Here o, can be
associated with a mapping for the 2z variable into complex
space [7], [8]. Rearrangement of (3a) results in
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Multiplication by jw results in a second-order time derivative
for H, in the time domain. Implementation of this scheme
results in a less efficient algorithm then the original split-
field PML. An alternate approach is to define an intermediate
variable to abscrb the effect of the extra jw term. Two methods
are presented that have identical storage requirements, but
different CPU requirements per iteration. Transformation of
(4) into the time domain produces a modified Maxwell’s
equation with an additional source term, denoted by F, that
is dependent upon the integral of the normal component of
the electric field

0 OF, OFE, OF,
O = R

where

F, = E dt. 6)
Ho
This method provides physical insight into the action of the
PML medium in terms of dependent sources. However, it is
not the most convenient formulation for numerical implemen-
tation. Alternatively, this source F, can be incorporated with
E, into the variable P,
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Similar equations can be derived for the other field components
tangential to the direction of propagation, i.e. Hy, E,, and E,,.
The electric field equations are modified by the dual variables
G, and Q. for F, and P,, respectively. The equations for the
normal components, E, and H,, are unchanged.

The six field equations are discretized using the Yee leapfrog
scheme with central differencing, with the following represen-
tative equation:
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where spatial indexes have been removed for notational clarity.
The auxiliary integrals are performed using a running sum
trapezoid rule integration method
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The update of F* is performed in two steps to avoid the back-
storing of any variables. The contribution from E?~! is added
to F»=1. Then E? is coraputed from E7—1, Hy /2 g =12,
and GZ_l/ ’ In the edge and corner PML regions the split
equations are updated. On the interfaces, the split tangential
electric field components are combined into total field com-
ponents. Finally, F7* is completed by adding the contribution

from E?. A similar two-step process is done for G "+1/2 For
the second method, discretization of (8) yields
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Again a two-step process is used to calculate P efficiently.

The CPU and memory savings of the modified PML formu-
lation over the split field formulation can be demonstrated by
considering a free space radiation problem within a cubical
domain N cells on a side surrounded by a PML medium
of D layers. The FDTD implementation of the original PML
equations results in the storage requirements for 12 N x N x D
arrays for the split field components in the six wall regions,
requiring a total of 48 additions and 16 multiplications per
iteration. For the special case of a wall PML region with
propagation in the z-direction, E, and H, do not need to
be split. This 10-unknown PML region requires 40 additions
and 14 multiplications. Both unsplit formulations require only
8 N x N x D arrays in the six wall regions. Fig. 2 shows
that memoty savings of up to 20% can be achieved within the
PML as the ratio of Yee size to PML depth is varied. The
dependent source implementation results in 36 additions and
14 multiplications for cubic cells. For a PML depth to Yee
dimension ratio of 0.1, roughly 7% CPU time savings within
the PML is attained. The second implementation eliminates
eight additions per iteration resulting in up to 22% time
savings within the PML (14% for general noncubical cells).
As compared to the original 12 unknown formulation, savings
in memory and runtime can be as much as 33%. Both unsplit
formulations provide the same memory benefits; however, the
second implementation not only performs more efficiently but
is also more attractive for parallel implementation.
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Fig. 2. Percent reduction in memory and runtime requirements within PML
regions as ratio of number of PML layers to number of cubic Yee cells along
an edge of a cubical volume is varied.
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Fig. 3. Local error observed at E.(z,0,0) at time step 100 for various
PML implementations. Parabolic profile with B = .001%; Az = 15 mm,
At = 25 ps.

IV. NUMERICAL EXAMPLES

Several test cases are investigated to ascertain the accuracy
levels that are associated with the unsplit PML formula-
tion. First, a simple point source radiating in free space
is considered. PML is used to truncate the computational
volume of the test region to 50 x 50 x 51 cubical cells. The
local error caused by reflections from the PML is computed
by subtracting the test field from the corresponding space-
time field in a much larger reference domain. £, at the
center of the domain is excited with a smooth compact
pulse [9]. Fig. 3 shows the absolute error at time step 100
along the line (z,0,0) for various PML implementations.
The difference between exponential and central differencing is
seen to be insignificant. The results for the reduced unknown
formulations are indistinguishable from the split formulation
results.

To test the effectiveness of the modified formulation without
the aid of the corner regions, a rectangular X -band waveguide

is studied. A 10.0-GHz ramped sinusoidal excitation [10] is
used to operate above the 6.557-GHz cutoff frequency of
the dominant TE;; mode. The reflection error due to the
PML termination is calculated at the center of the termination
plane. Reflections of —71.3 dB are obtained with the split field
formulation as well as both modified formulations for a 12-
layer PML with fourth-order conductivity profiles. However,
the modified PML is more sensitive to the order of the
conductivity profile than the regular PML suggesting that the
modified formulations are more prone to reflections caused
by the larger discontinuities in ¢ that occur in the first few
layers with low-order profiles. Because higher-order profiles
do not increase the computational demand, the modified PML
efficiently provides accuracy levels comparable to the more
expensive split PML.

V. CONCLUSION

An efficient reduced field implementation of the Berenger
perfectly matched layer concept has been presented. By com-
bining the unsplit formulation in the wall regions with the split
formulation in the edges and corners, memory and CPU time
requirements may be reduced by up to 33% when compared to
the original 12-unknown formulation or 20% when compared
to the 10-unknown formulation specialized for wall regions.
The reduced method cannot be applied in the edge and
corner regions because the overlapping conductivities make
the expressions for the tangential components less efficient
than the split formulation. Research is currently underway on
removing this restriction.
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